
Pattern Recognition Letters 30 (2009) 27–38
Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec
An experimental comparison of performance measures for classification

C. Ferri *, J. Hernández-Orallo, R. Modroiu
Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, València 46022, Spain
a r t i c l e i n f o

Article history:
Received 18 December 2006
Received in revised form 4 December 2007
Available online 2 September 2008

Communicated by T.K. Ho

Keywords:
Classification
Performance measures
Ranking
Calibration
0167-8655/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.patrec.2008.08.010

* Corresponding author. Fax: +34 96 387 73 59.
E-mail addresses: cferri@dsic.upv.es (C. Ferri), joral

Orallo), emodroiu@dsic.upv.es (R. Modroiu).
a b s t r a c t

Performance metrics in classification are fundamental in assessing the quality of learning methods and
learned models. However, many different measures have been defined in the literature with the aim of
making better choices in general or for a specific application area. Choices made by one metric are
claimed to be different from choices made by other metrics. In this work, we analyse experimentally
the behaviour of 18 different performance metrics in several scenarios, identifying clusters and relation-
ships between measures. We also perform a sensitivity analysis for all of them in terms of several traits:
class threshold choice, separability/ranking quality, calibration performance and sensitivity to changes in
prior class distribution. From the definitions and experiments, we make a comprehensive analysis of the
relationships between metrics, and a taxonomy and arrangement of them according to the previous
traits. This can be useful for choosing the most adequate measure (or set of measures) for a specific appli-
cation. Additionally, the study also highlights some niches in which new measures might be defined and
also shows that some supposedly innovative measures make the same choices (or almost) as existing
ones. Finally, this work can also be used as a reference for comparing experimental results in pattern rec-
ognition and machine learning literature, when using different measures.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The correct evaluation of learned models is one of the most
important issues in pattern recognition. One side of this evaluation
can be based on statistical significance and confidence intervals,
when we want to claim that one model is better than another or
that one method is better than another. The other side of evalua-
tion relies on which metric is used to evaluate a learned model.
Evaluating a regression model with absolute error is certainly not
the same as doing so with squared error. In fact, for regression,
the relation and appropriateness of several evaluation measures
have been analysed both theoretically and experimentally (Harrell,
2001; Ripley, 1996; Bishop, 1995), and the difference between the
existing measures is sufficiently clear. The continuous character of
the output (and measures) makes the task easier, especially on the
theoretical level. However, for classification, there is a very exten-
sive number of measures, some of them without a clearly justified
theoretical basis, some of them recently introduced, and there is no
comprehensive analysis of whether some of them bring a really
new point of view when evaluating classifiers.

In this work, we concentrate on metrics for evaluating classifi-
ers, such as Accuracy, F-measure, Rank Rate, Area Under the ROC
Curve (AUC), Squared Error (Brier Score), LogLoss/Entropy, etc.
ll rights reserved.
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Some of these metrics have been introduced for very different
applications and, supposedly, measure quite different things. More
specifically, we will use 18 different metrics, which we classify in
three families as follows:

� Metrics based on a threshold and a qualitative understanding of
error: accuracy, macro-averaged accuracy (arithmetic and geo-
metric), mean F-measure (F-score) and Kappa statistic. These
measures are used when we want a model to minimise the
number of errors. Hence, these metrics are usual in many direct
applications of classifiers. Inside this family, some of these mea-
sures are more appropriate for balanced or imbalanced datasets,
for signal or fault detection, or for information retrieval tasks.

� Metrics based on a probabilistic understanding of error, i.e. mea-
suring the deviation from the true probability: mean absolute
error, mean squared error (Brier score), LogLoss (cross-entropy),
two versions of the probability (rank) rate and two measures for
calibration. These measures are especially useful when we want
an assessment of the reliability of the classifiers, not only mea-
suring when they fail but whether they have selected the wrong
class with a high or low probability. This is also crucial for com-
mittee models (machine ensembles) to properly perform a
weighted fusion of the models.

� Metrics based on how well the model ranks the examples: AUC
(Flach et al., 2003), which for two classes is equivalent to the
Mann–Whitney–Wilcoxon statistic, and is closely related to the
concept of separability. These are important for many
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applications, such as mailing campaign design, Customer Relation-
ship Management (CRM), recommender systems, fraud detection,
spam filtering, etc., where classifiers are used to select the best n
instances of a set of data or when good class separation is crucial.

We also include two other measures, SAUC and PAUC which are
supposedly in the middle between the last two groups.

In this paper, we analyse how these 18 metrics correlate to each
other, in order to ascertain to what extent and in which situations
the results obtained and the model choices performed with one
metric are extensible to the other metrics. The results show that
most of these metrics really measure different things and in many
situations the choice made with one metric can be different from
the choice made with another. These differences become larger
for multiclass problems, problems with very imbalanced class dis-
tribution and problems with small datasets. But it also shows that
other measures are highly correlated (or they make the same
choice) and results obtained on one measure could be extrapolated
to other measures. For instance, we will see that probabilistic rank
rate always makes the same decision as absolute error.

The analysis is completed with a set of experiments to quantify
sensitivity to four important traits which are present in some mea-
sures but not present in others. These traits are class threshold
choice optimality, separability/ranking quality, calibration perfor-
mance and sensitivity (or conversely robustness) to changes in
prior class distribution. From this analysis, we can quantify the
relations on these ‘dimensions’, which is a very useful complement
to the results of the correlation analysis.

To our knowledge, this is the first experimental work which thor-
oughly compares the most generally used classifier evaluation met-
rics for binary and multiclass problems arriving at conclusions
regarding interdependence and sensitivity of these measures. It is
also the first work which gives a comprehensive taxonomy of these
measures.

The paper is organised as follows: In the following Section, we
explore some related work. In Section 3, we introduce the mea-
sures employed in this work and we present a first taxonomy,
based on their definition. Next, in Section 4, we explain the meth-
odology used in the experiments. The results of these experiments
are detailed in Section 5. Section 6 presents four different experi-
ments to analyse the sensitivity of the 18 measures to the four
above-mentioned traits: class threshold choice, separability/rank-
ing quality, calibration performance and sensitivity to changes in
prior class distribution. Finally, Section 7 includes the conclusions,
and gives some ideas for future work.
2. Related works

Several works have shown the fact that usually, given a dataset,
the learning method that obtains the best model according to a
given measure, is not the best method if we employ a different
measure. For instance, it is said in (Huang et al., 2003) that Naive
Bayes and pruned decision trees are very similar in predictive
accuracy. However, using exactly the same algorithms, in (Huang
and Ling, 2005) the authors show that Naive Bayes is significantly
better than pruned decision trees in AUC. The different results can-
not be explained here by slightly different implementations or
variants of machine learning algorithms, but on the fact that the
two measures (accuracy and AUC) evaluate different things.

The relationship between AUC and accuracy has been specially
studied. For instance, Cortes and Mohri (2003) makes a detailed
statistical analysis of the relationship between the AUC and the er-
ror rate. The results show that ‘‘the average AUC is monotonically
increasing as a function of the classification accuracy, but that the
standard deviation for uneven distributions and higher error rates
is noticeable. Thus, algorithms designed to minimize the error rate
may not lead to the best possible AUC values”. On the other hand,
Rosset (2004) is a surprising work, since it shows that if we use
AUC for selecting models using a validation dataset, we obtain bet-
ter results in accuracy (in a different test dataset) than when
employing accuracy for selecting the models. Following this idea,
(Wu et al., 2007) shows that an AUC-inspired measure (SAUC) is
better for selecting models when we want to improve the AUC of
the models. It has also been shown Domingos and Provost
(2003), Ferri et al. (2003) that although pruning usually improves
accuracy in decision trees, it normally decreases the AUC of the
decision trees. Specifically, most of the studies on the effect of
pruning on decision trees have been performed taking accuracy
into account (see e.g. Esposito et al. (1997)). Not many works can
be found which compare other measures in terms similar to those
in which accuracy and AUC have been studied recently. An excep-
tion is Davis and Goadrich (2006) where the authors study the rela-
tionship between ROC curves and Precision-Recall curves.

In Multi-Classifier Systems (Kuncheva, 2004) many works have
been devoted to study the resulting accuracy of an ensemble of
combined classifiers given the original accuracies and some other
conditions (Melnik et al., 2004; Narasimhamurthy, 2005; Kuncheva
et al., 2003) or how to combine them in order to increase accuracy
(Young Sohn, 1999). However, little is known when the perfor-
mance measure is different from accuracy (Freund et al., 2003; Cor-
tes and Mohri, 2003; Lebanon and Lafferty, 2002).

Finally, in other works Zadrozny and Elkan (2001), different
probabilistic measures (MSE, log-loss and profit) are used to eval-
uate different methods for calibrating classifiers.

All of these works are difficult to compare and understand to-
gether especially because there is no comprehensive study of the
several metrics they are using to evaluate performance.

There are some previous works that compare some performance
measures for classification theoretically. Flach (2003), Fuernkranz
and Flach (2005) analyse several metrics (AUC, accuracy, Fmeasure)
using the ROC space. Buja et al. (2005) studies several metrics (Lo-
gLoss, squared error, and others) checking whether these are proper
scoring rules, defining proper score rules as, ‘‘functions that score
probability estimates in view of data in a Fisher-consistent man-
ner”. Huang and Ling (2007) is also a theoretical work on the fea-
tures a metric should have and proposing new ones.

However, empirical studies have been scarce and limited in lit-
erature. The only exception to this is Caruana and Niculescu-Mizil
(2004), independent and simultaneous to a preliminary work of
ours (Ferri et al., 2004). Caruana and Niculescu-Mizil’s work anal-
yses the behaviour of several performance measures against a
great number of machine learning techniques, the relationship be-
tween the measures using multi-dimensional scaling and correla-
tions and, finally, derives a new central measure based on other
measures. The main goal of the paper is to analyse which family
of algorithms behaves best with which family of measures. We dis-
agree on this point because each machine learning family of algo-
rithms includes hundreds or even thousand of variants. Some of
them are tuned to optimise accuracy, others to optimise MSE, oth-
ers to optimise AUC, . . . so a clear result on whether neural net-
works, or support-vector machines are better for this or other
measures is, in our opinion, very difficult to state.

Additionally, the work in (Caruana and Niculescu-Mizil, 2004)
only used two-class measures and relatively large datasets. Small
datasets are essential, because of the size of the training and the
test set is an especially important issue when comparing mea-
sures: measures based on a probabilistic view of error integrate
more information than qualitative ones and, consequently, they
are supposedly better for smaller datasets.

The methodology used in (Caruana and Niculescu-Mizil, 2004)’s
analysis is different. Some experiments use Euclidean distances
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between measures, which requires normalisation and, even with
this, it is very sensitive to outliers, non-linear behaviours (e.g.
MSE) or unboundness (e.g. LogLoss). Then they use correlations.
They combine multi-dimensional scaling (on a 2D projection) with
the results from the correlation matrix, but they do not use any
clustering techniques to arrange the measures. As we will see be-
low, there are more than two basic dimensions, so we decided
not to use projections (as multi-dimensional scaling) as a result.

Finally, our work is much more exhaustive in many ways. We
include many more measures, some of them very important, such
as macro-averaged accuracy, the AUC variants and probability rate,
we use a much larger number of datasets, we analyse the results in
a segmented way for two-class vs. multiclass, small vs. large data-
sets, balanced vs. imbalanced, etc.

After these differences in goals and methodologies, the results
obtained by Caruana and Niculescu-Mizil (2004) and the rest of
works mentioned in this section, as we will see below, are more
complementary than overlapping with this work.
3. Measures

In this section, we present the definition of the measures we
will analyse. The selection of measures is based both on the prop-
erties of each measure (we want to cover a broad range of different
measures) and their use (we want to cover the most popular ones
in machine learning and pattern recognition literature).

Taking into account a broad range of different measures, we are
particularly interested in three types of measures, as mentioned in
the introduction: measures that are sensitive to a good choice of
threshold, measures that quantify the quality of rankings (separa-
bility), and measures which quantify the deviation of the estimated
probability wrt. to the actual probability. For instance, a very good
classifier in terms of separability (rankings) can yield very bad
accuracy if we choose a bad threshold to separate the classes. On
the other hand, a classifier can have very good results for a thresh-
old, but perform very badly for other thresholds (when costs or
context changes, as ROC analysis deals with).

The difference which is sometimes most difficult to grasp is
the difference between good rankings and good probabilities. A
classifier can produce very good rankings, but probabilities might
differ from the actual probabilities. In this case, we say that the
classifier is not well calibrated. More precisely, calibration is de-
fined as the degree of approximation of the predicted probabili-
ties to the actual probabilities. It is usually a measure of the
reliability of the prediction (DeGroot and Fienberg, 1982). If we
predict that we are 99% sure, we should expect to be right 99%
of the times. More formally, a classifier is perfectly calibrated if
for a sample of examples with predicted probability p, the ex-
pected proportion of positives is close to p. The problem of mea-
suring calibration is that the test set must be split into several
segments or bins. If too few bins are defined, the real probabilities
are not properly detailed to give an accurate evaluation. If too
many bins are defined, the real probabilities are not properly esti-
mated. A partial solution to this problem is to make the bins over-
lap. These different approaches have produced several measures
to estimate calibration.

In fact, the relation between good class separability and calibra-
tion has been analysed in literature. The most remarkable ap-
proach is based on the so-called ‘‘decompositions of the Brier
score” (Sanders, 1963; Murphy, 1972), which separate the Brier
score (Mean Squared Error) measure into a reliability, a resolution,
and an uncertainty components, or, alternatively, into a calibration
term and refinement term. This calibration term requires binning.

Below we will introduce the definitions of 18 measures. The
first 5 are qualitative and the other 13 are probabilistic.
3.1. Definition of measures

We use the following notation. Given a (test) dataset, m denotes
the number of examples, and c the number of classes. f ði; jÞ repre-
sents the actual probability of example i to be of class j. We assume
that f ði; jÞ always takes values in {0,1} and is strictly not a proba-
bility but an indicator function. With mj ¼

Pm
i¼1f ði; jÞ, we denote

the number of examples of class j. pðjÞ denotes the prior probability
of class j, i.e., pðjÞ ¼ mj=m.

Given a classifier, pði; jÞ represents the estimated probability of
example i to be of class j taking values in [0,1]. Chði; jÞ is 1 iff j is the
predicted class for i obtained from pði; jÞ using a given threshold h
(or decision rule, especially in multiclass problems). Otherwise,
Chði; jÞ is 0. We will omit h below.

� Accuracy: (Acc). This is the most common and simplest measure
to evaluate a classifier. It is just defined as the degree of right
predictions of a model (or conversely, the percentage of mis-
classification errors)

Acc ¼
Pm

i¼1

Pc
j¼1f ði; jÞCði; jÞ

m
:

� Kappa statistic: (KapS). This is originally a measure of agree-
ment between two classifiers (Cohen, 1960), although it can also
be employed as a classifier performance measure (Witten and
Frank, 2005) or for estimating the similarity between the mem-
bers of an ensemble in Multi-classifiers Systems (Kuncheva,
2004)

KapS ¼ PðAÞ � PðEÞ
1� PðEÞ ;

where PðAÞ is the relative observed agreement among classifiers,
and PðEÞ is the probability that agreement is due to chance. In
this case, PðAÞ is just the accuracy of the classifier, i.e.
PðAÞ ¼ Acc as defined above, and PðBÞ is defined as follows:

PðEÞ ¼
Pc

k¼1

Pc
j¼1

Pm
i¼1f ði; kÞCði; jÞ

h i
�
Pc

j¼1

Pm
i¼1f ði; jÞCði; kÞ

h i� �

m2 :

� Mean F-measure: (MFM). This measure has been widely
employed in information retrieval (Baeza-Yates and Ribeiro-
Neto, 1999)

F �measure ðjÞ ¼ 2 � recall ðjÞ � precision ðjÞ
recall ðjÞ þ precision ðjÞ ;

where

recall ðjÞ ¼ correctly classified positives
total positives

¼
Xm

i¼1

f ði; jÞCði; jÞ
mj

;

precision ðjÞ ¼ correctly classified positives
total predicted as positives

¼
Pm

i¼1f ði; jÞCði; jÞPmj

i¼1Cði; jÞ
;

where j is the index of the class considered as ‘‘positive”. Finally,
mean F-measure is defined as follows:

MFM ¼
Pc

j¼1F �Measure ðjÞ
c

:

� Macro average arithmetic: (MAvA). This is defined as the arith-
metic average of the partial accuracies of each class. This is usu-
ally referred as macro average (Mitchell, 1997).

MAvA ¼
Pc

j¼1

Pm

i¼1
f ði;jÞCði;jÞ
mj

c
:

� Macro average geometric: (MAvG). This is defined as the geo-
metric average of the partial accuracies of each class.
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MAvG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yc

j¼1

Pm
i¼1f ði; jÞCði; jÞ

mj

c

vuut :

� AUC of each class against the rest, using the uniform class dis-
tribution: (AUNU). The AUC (Area Under the ROC Curve) (Fawc-
ett, 2006) of a binary classifier is equivalent to the probability
that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance (Mann–Whit-
ney–Wilcoxon statistic interpretation).

AUC ðj; kÞ ¼
Pm

i¼1f ði; jÞ
Pm

t¼1f ðt; kÞIðpði; jÞ;pðt; jÞÞ
mj �mk

:

Ið�Þ is a comparison function satisfying Iða; bÞ ¼ 1 iff
a > b; Iða; bÞ ¼ 0 iff a < b and Iða; bÞ ¼ 0:5 iff a ¼ b.
This measure has been extended for multi-class problems in
more than one way. We present four variants below.
AUNU computes the area under the ROC curve treating a c-dimen-
sional classifier as c two-dimensional classifiers, where classes are
assumed to have uniform distribution, in order to have a measure
which is independent of class distribution change. Formally

AUNU ¼
Pc

j¼1AUC ðj; restjÞ
c

;

where restj gathers together all classes different from class j.
Here, the area under the ROC curve is computed in the one
against all approach, i.e. we compute this measure as the average
of c combinations.

� AUC of each class against the rest, using the a priori class dis-
tribution: (AUNP). This measure (Fawcett, 2001) computes the
area under the ROC curve treating a c-dimensional classifier as
c two-dimensional classifiers, taking into account the prior
probability of each class ðpðjÞÞ

AUNP ¼
Xc

j¼1

pðjÞAUC ðj; restjÞ:

� AUC of each class against each other, using the uniform class
distribution: (AU1U). This metric also represents the approxi-
mation of AUC in the case of multi-dimensional classifiers, com-
puting the AUC of cðc � 1Þ binary classifiers (all possible
pairwise combinations) and considering uniform distribution
of the classes (Hand and Till, 2001)

AU1U ¼ 1
cðc � 1Þ

Xc

j¼1

Xc

k–j

AUC ðj; kÞ:

� AUC of each class against each other, using the a priori class
distribution: (AU1P). In order to complete all the reasonable
extensions of AUC for more than two classes, we define a final
AUC-based measure. This measure represents the approxima-
tion of AUC in the case of multi-dimensional classifiers, comput-
ing AUC of cðc � 1Þ binary classifiers and considering the a priori
distribution of the classes

AU1P ¼ 1
cðc � 1Þ

Xc

j¼1

Xc

k–j

pðjÞAUC ðj; kÞ:

� Scored AUC: (SAUC). is a variant of the AUC, which includes
probabilities in the definition (Wu et al., 2007). The idea is to
introduce a rank measure which is robust to rank changes due
to small probability variations.
First, Scored AUC for two classes is defined as

Scored AUCðj; kÞ

¼
Pm

i¼1f ði; jÞ
Pm

t¼1f ðt; kÞIðpði; jÞ; pðt; jÞÞ � ðpði; jÞ � pðt; kÞÞ
mj �mk

;

which is equal to AUC ði; jÞ except from an additional factor
ðpði; jÞ � pðt; kÞÞ, which is added to quantify the deviation in prob-
ability estimation whenever the rank is incorrect.
From the binary AUC, the multiclass SAUC measure is defined as

SAUC ¼ 1
cðc � 1Þ

Xc

j¼1

Xc

k–j

Scored AUC ðj; kÞ:

� Probabilistic AUC: (PAUC). is also a variant of the AUC which
includes probabilities in the definition (Ferri et al., 2004) in more
or less the same line as SAUC, although the part with the indica-
tor function is no longer used. This means that it is not a proper
rank measure.First, Probabilistic AUC for two classes is defined
as

Prob AUC ðj; kÞ ¼

Pm
i¼1

f ði;jÞpði;jÞ
mj
�
Pm
i¼1

f ði;kÞpði;jÞ
mk

þ 1

2
:

From the binary AUC, the multiclass PAUC measure is defined as

PAUC ¼ 1
cðc � 1Þ

Xc

j¼1

Xc

k–j

Prob AUC ðj; kÞ:

� Macro Average Mean Probability Rate: (MAPR). It is computed

as an arithmetic average of the mean predictions for each class
(see Mitchell, 1997)

MAPR ¼
Pc

j¼1

Pm

i¼1
f ði;jÞpði;jÞ
mj

c
:

� Mean Probability Rate: (MPR). This measure is also a measure
which analyses the deviation from the true probability. It is a
non-stratified version of the previous one, the arithmetic aver-
age of the predicted probabilities of the actual class (Lebanon
and Lafferty, 2002)

MPR ¼
Pc

j¼1

Pm
i¼1f ði; jÞpði; jÞ

m
:

� Mean Absolute Error: (MAE). This metric shows how much the
predictions deviate from the true probability and it only differs
from the previous one in that the product is changed by the
absolute value of the difference

MAE ¼
Pc

j¼1

Pm
i¼1jf ði; jÞ � pði; jÞj

m � c :

� Mean Squared Error: (MSE). This is just a quadratic version of
MAE, which penalises strong deviations from the true probabil-
ity. This metric is also known as Brier score (Brier, 1950) and
integrates calibration and other components, usually grouped
under the term ‘refinement’

MSE ¼
Pc

j¼1

Pm
i¼1ðf ði; jÞ � pði; jÞÞ2

m � c :

� LogLoss: (LogL). This is also a measure of how good probability
estimates are (also known as cross entropy) and it has been used
when calibration is important (Good, 1952, 1968; Dowe et al.,
1996)

LogL ¼
�
Pc

j¼1

Pm
i¼1ðf ði; jÞlog2pði; jÞÞ

m
:

To avoid the case of log2ð0Þ; log2pði; jÞ is computed as
log2ðmaxðpði; jÞ; �ÞÞ, where � will be set to 0.00001 for the
experiments.

� Calibration Loss: (CalL). In (Fawcett and Niculescu-Mizil, 2007)
and, independently, in (Flach and Takashi Matsubara, 2007), the
relationship between the AUC-based measures, and ROC analy-
sis in general, with calibration has been clarified. A perfectly
calibrated classifier always gives a convex ROC curve. A method



Table 1
Characterisation of measures according to different traits

Measure Class threshold Calibration Ranking Class frequencies

Acc Yes No No Yes
KapS Yes No No Yes
FME Yes No No Partially
MAVA Yes No No No
MAVG Yes No No No
AU1u No No Yes No
AU1p No No Yes Yes
AUnu No No Yes No
AU1p No No Yes Yes
SAUC No Yes Yes No
PAUC No Yes Yes No
MAPR No Yes Yes No
MPR No Yes Yes Yes
MAE No Yes Yes Yes
MSE No Yes Yes Yes
LogL No Yes Yes Yes
CalL No Yes Yes No
CalB No Yes Yes Yes
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for calibrating a classifier is to compute the convex hull or,
equivalently, to use isotonic regression. In (Flach and Takashi
Matsubara, 2007), they derive a decomposition of the Brier Score
into calibration loss and refinement loss. Calibration loss is
defined as the mean squared deviation from empirical probabil-
ities derived from slope of ROC segments

CalLoss ðjÞ ¼
Xrj

b¼1

X
i2sj;b

pði; jÞ �
X
i2sj;b

f ði; jÞ
jsj;bj

0
@

1
A

2

;

where rj is the number of segments in the ROC curve for class j,
i.e. the number of different estimated probabilities for class
j : jfpði; jÞgj. Each ROC segment is denoted by sj;b, with b 2 1::rj,
and formally defined as

sj;b¼fi21; . . . ;mj 8k21; . . . ;m : pði;jÞPpðk;jÞ^ iR sj;d; 8d<bg:
From the previous binary CalLoss, the general multiclass Calibra-
tion Loss measure is defined as

CalL ¼ 1
c

Xc

j¼1

CalLoss ðjÞ:

� Calibration by Bins: (CalB). A calibration measure based on
overlapping binning is CAL (Caruana and Niculescu-Mizil,
2004). This is defined as follows. For each class, we must order
all cases by predicted positive class pði; jÞ, giving new indices
i�. Take the 100 first elements (i� from 1 to 100) as the first
bin. Calculate the percentage of positives (class j) in this bin as
the actual probability, f̂ j. The error for this bin isP

i�21;...;100jpði; jÞ � f̂ jj. Take the second bin with elements from 2
to 101 and compute the error in the same way. At the end,
average the errors. The problem of using 100 as (Caruana and
Niculescu-Mizil, 2004) suggest is that it might be a much too
large bin for small datasets. Instead of 100 we set a different bin
length, s ¼ m=10, to make it more size-independent. Formally:

CALðjÞ ¼ 1
m� s

Xm�s

b¼1

Xbþs�1

i�¼b

pði�; jÞ �
Pbþs�1

i�¼b f ði�; jÞ
s

�����

�����:

We indicate with i� that indices are ordered by pði; jÞ. For more
than two classes, the measure is the average for all classes, i.e.

CalB ¼ 1
c

Xc

j¼1

CALðjÞ:

Some of the previous measures (MFM, MAvA, MAvG, AUC vari-
ants, SAUC, PAUC, MAPR, MPR, CalL and CalB) have to be care-
fully implemented to exclude any class for which the test set
has no instances.
3.2. Taxonomy of measures according to their properties

Previously, we mentioned that from the 18 measures, the first 5
measures are qualitative and the remaining 13 are probabilistic.
This is now clear from the definitions if we just check that the first
5 use the term Cði; jÞ in their definition (which is compared to the
actual f ði; jÞ). So, the first 5 measures are sensitive to the class
threshold. The other 13 measures do not use the term Cði; jÞ in their
definition but use the term pði; jÞ. This is the estimated probability
which is compared to the actual probability f ði; jÞ.

We can enrich the previous analysis if we also consider whether
the measure takes into account the ranking (this corresponds to
the Iðpði; jÞ; pðt; jÞÞ term) but not the direct value of the probability
estimation. Additionally, we can also analyse whether the mea-
sures are sensitive to class frequency changes or not.

In Table 1, we indicate whether each of the 18 measures is influ-
enced or not by changes in these four traits: changes in class
thresholds, changes in calibration which preserve the ranking,
changes in ranking which do not cross the class thresholds (but
usually affect calibration), and changes in class frequency.

As can be seen in the table, according to the first three traits,
threshold, calibration and ranking, the measures can be grouped
as those focused on error (yes, no, no), those focused on ranking
(no, no, yes) and those focused on probabilities (no, yes, yes). The
fourth trait, sensitivity to class frequency change is present in some
of them.

Some interesting things can be observed from the table. The
most surprising issue is that there is no measure which has a
‘Yes’ in both the class threshold column and either the calibration
or ranking columns. This means that, to date, and as far as we
know, there is no measure which simultaneously combines the
threshold and the estimated probability. In fact, in the definition
of the 18 measures, none of them use Cði; jÞ and pði; jÞ at the same
time. This would be a good niche to study in the future, especially
because in some applications the deviation from the actual proba-
bility is only relevant when the classifier fails. For instance, mea-
sures with a term like f ði; jÞ � Cði; kÞ � pði; kÞ might be analysed.
Another interesting observation from the table is that many mea-
sures have exactly the same characterisation for the four traits,
so the differences can only be shown from a quantitative analysis.
For instance, it seems that LogL is more sensitive to calibration
than MSE, and MSE is more sensitive than MAE, but we cannot
quantify these difference from the previous table. The experimen-
tal analyses in Sections 5 and 6 will confirm one of these state-
ments and refute the other.
4. Methodology

The experiments were performed using Witten and Frank
(2005), which we extended with several new metrics, not included
in the current distribution. We used six well-known machine
learning algorithms: J48, Naive Bayes, Logistic Regression, Multi-
layer Perceptron, K-Nearest Neighbour, AdaBoost with ten J48
trees and we performed the experiments with 30 small and med-
ium-size datasets included in the machine learning repository
(Blake and Merz, 1998), 15 of them being two-class (binary) prob-
lems and 15 of them being multiclass. Also half of them are consid-
ered to be balanced, and the rest, imbalanced. Table 2 includes
further details of the datasets (size, number of classes, number of
nominal attributes, number of numerical attributes, percentage
of the majority class). The datasets which we consider balanced
are highlighted in bold.



Table 2
Datasets used in the experiments

# Datasets Size Classes Nom. Num. %Maj–%Min.

1 Autos5c 202 5 10 15 33.16–10.89
2 Balance Scale 625 3 0 4 46.08–7.84
3 Breast Cancer 286 2 0 9 70.27–29.72
4 Chess 3196 2 36 0 52.22–47.48
5 Cmc 1473 3 7 2 42.70–22.61
6 Credit rating 690 2 9 6 55.50–44.50
7 Dermatology 366 6 33 1 30.60–5.46
8 German–credit 1000 2 13 7 70.00–30
9 Glass 214 6 9 0 35.51–4.2
10 Heart–statlog 270 2 13 0 55.55–44.45
11 Hepatitis 155 2 14 5 79.35–20.65
12 House voting 435 2 16 0 54.25–45.75
13 Ionosphere 351 2 0 34 64.10–35.9
14 Iris plan 158 3 0 4 33.33–33.33
15 Monks1 556 2 6 0 50–50
16 Monks2 601 2 6 0 65.72–34.27
17 Monks3 554 2 6 0 51.99–48.01
18 New thyroid 215 3 0 5 69.97–13.95
19 Pima 768 2 0 8 65.10–34.90
20 Sick 3772 2 22 7 93.87–6.12
21 Soybean 683 19 31 0 13.46–1.17
22 Segmentation 2310 7 0 19 14.28–14.28
23 Spect 80 2 0 44 50–50
24 Tae 151 3 2 3 34.43–32.45
25 Tic–tac 958 2 8 0 65.34–34.65
26 Vehicle3c 846 3 0 18 51.41–23.52
27 Waveform 5000 3 0 21 33.92–33.06
28 Wine 178 3 0 13 39.88–26.97
29 Wovel 990 11 3 11 9.09–9.09
30 Zoo 101 7 16 1 40.6–3.96
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The above mentioned models were evaluated using 20� 5 fold
cross-validation, each of the 6 models being applied to each of the
30 datasets, getting 600 results for each dataset, making 18,000 re-
sults in total. We set up seven types of analysis: an overall analysis
for all datasets, an analysis for binary and multiclass problems, for
balanced and imbalanced problems, and for short datasets and
large datasets. In each case we calculated the Pearson (standard)
linear correlation and Spearman rank correlation between all eigh-
teen metrics. Apart from the global view for all the datasets which
will be presented using linear and rank correlations, the other six
analyses will only be shown for rank correlations.

It is important to remark that we compute the correlation for
each dataset, i.e., we analyse the results of the 6 models for one
dataset and the corresponding 100 combinations of the cross-val-
idation. Not merging results from different datasets is crucial, since
measure values are influenced in very different ways depending on
the dataset, e.g. number of classes, imbalance, problem difficulty,
etc. Consequently, we construct one correlation matrix per dataset.
Finally, we average (arithmetically) the 30 correlation matrices.
The results when we use the Pearson correlation indicate the
strength and direction of a linear relationship between two mea-
sures, while the rank correlation assesses how well an arbitrary
monotonic function could describe the relationship between two
variables, without making any assumptions about the frequency
distribution of the variables. A high rank correlation between
two measures means that for the same problem these two mea-
sures have ranked the 6 models similarly. In other words, both
measures would usually select the same model. Unlike the stan-
dard correlation coefficient, the assumption that the relationship
between the variables is linear is not required. In order to avoid
negative values for correlation we worked with 1-MAE, 1-MSE, 1-
LogL, 1-CalL and 1-CalB.

Since there are hence eight correlation matrices, and these are
difficult to understand at a glance, we will use dendrograms for
representation; where the linkage distance is defined as
ð1� correlationÞ. A dendrogram is a tree diagram frequently used
to illustrate the arrangement of the clusters produced by a cluster-
ing algorithm. This kind of diagram has several advantages: we can
easily visualise the clusters formed by the measures, as well as the
linkage distance among clusters. It is also quite easy to find out the
number of clusters and their components once we have selected a
linkage distance. There are several methods for constructing a den-
drogram using a linkage distance. We will use the ‘‘average group
distance” method, which joins an existing group to the element (or
group) whose average distance to the group is minimum.
5. Analysis of results

In this section, we discuss some of the interesting outcomes we
found from the analysis of the correlation between metrics. First
we analyse the correlation matrix (both linear and rank) for all
datasets, as shown in Table 3.

In Fig. 1, we show dendrograms built from the obtained linear
and rank correlations using all the available results. This figure rep-
resents the relations between the measures in an abridged and
more comprehensible way.

The correlations shown on the matrix for both kinds of correla-
tions, as well as both dendrograms are very similar (rank correla-
tions are slightly higher than linear correlations, as expected).
Consequently, there is no point in replicating the analysis. Hence,
we will focus on the results and dendrogram for rank correlation.

A general observation is that all correlations are positive, and
usually strong (greater than 0.5). The only clear exceptions are
some correlations between LogL and some probabilistic measures,
which we might consider in the same family a priori. This is mostly
due to the fact that LogL is an unbounded measure, i.e, a 0 wrong
probability has an infinity penalty (or very high if logð0Þ is avoided
in implementations).

A first specific observation is the close relationship between all
the qualitative measures: MAvA and MAvG, MFM, Acc and KapS, as
expected. Although not exactly equal, their choices are almost the
same. A second specific observation can be made with the ranking
measures (AU*). The 4 variants of AUC behave quite similarly, so
they can even be used interchangeably. This means that previous
studies in literature using these different variants for evaluating
rankers can be contrasted safely, independently of which variant
they have used. Additionally, it is interesting to note that no other
measure correlates to AUC more than 0.82, justifying the use of the
AUC as a genuinely different and compact measure/family. Finally,
on probabilistic measures, there is a clear equivalence between
MPR and MAE, which is not surprising if we take a look at their def-
initions. The same happens for PAUC and MAPR. In fact, it is shown
that PAUC has no relation whatsoever with AUC. These four mea-
sures, jointly with SAUC collapse at a linkage distance of 0.1, which
means that all of them are very similar. MSE behaves differently, as
does the fore-mentioned LogL, which seem to be out of this group.

In fact, if we take a look to dendrograms, and using linkage dis-
tance 0.1, we discover 7 clusters: AUC measures, qualitative mea-
sures, ‘plain’ probabilistic measures (MPR, MAE, PAUC, MAPR)
with SAUC, and then 4 isolated measures: MSE, LogL, CalL and CalB.
MSE and LogL use a quadratic or logarithmic function on the prob-
abilities, which might explain their distance to the other probabi-
listic measures. The two calibration measures are outsiders
because they are not proper performance measures and they try
to recognise the degree in which probabilities are calibrated. Their
closest measure is MSE (correlations about 0.7), since MSE can be
decomposed into a calibration term and other terms. However, it
is interesting to see that neither calibration measures correlate
well (0.42), which suggest that both measures of calibration are
significantly different (partly because bins for CalL are smaller).



Table 3
Linear (bottom-left) and rank (top-right) correlation results for all datasets

– Acc KapS MFM MavA MavG A1U A1P ANU ANP Sauc Pauc Mapr MPR MAE MSE LogL CalL CalB

Acc 0.98 0.95 0.92 0.83 0.70 0.72 0.70 0.72 0.68 0.76 0.76 0.79 0.79 0.88 0.40 0.55 0.58
KapS 0.98 0.97 0.95 0.88 0.72 0.74 0.72 0.73 0.71 0.79 0.79 0.78 0.78 0.87 0.40 0.55 0.56
MFM 0.95 0.97 0.98 0.93 0.71 0.71 0.70 0.69 0.74 0.81 0.81 0.78 0.78 0.85 0.38 0.54 0.57
MAvA 0.90 0.94 0.97 0.95 0.73 0.71 0.71 0.70 0.75 0.81 0.81 0.74 0.74 0.82 0.38 0.51 0.52
MAvG 0.85 0.90 0.95 0.98 0.67 0.66 0.66 0.64 0.75 0.80 0.80 0.72 0.72 0.75 0.32 0.47 0.52
AU1U 0.69 0.71 0.70 0.72 0.69 0.99 1.00 0.97 0.47 0.58 0.58 0.52 0.52 0.81 0.67 0.45 0.48
AU1P 0.71 0.73 0.70 0.71 0.68 0.98 0.99 1.00 0.46 0.57 0.57 0.52 0.52 0.82 0.67 0.46 0.48
AUNU 0.69 0.71 0.70 0.71 0.68 1.00 0.99 0.98 0.45 0.56 0.56 0.50 0.50 0.80 0.67 0.46 0.46
AUNP 0.71 0.73 0.69 0.70 0.67 0.97 0.99 0.98 0.45 0.55 0.55 0.51 0.51 0.81 0.67 0.46 0.46
SAUC 0.67 0.71 0.73 0.74 0.75 0.45 0.45 0.43 0.43 0.97 0.97 0.92 0.92 0.61 0.03 0.32 0.60
PAUC 0.74 0.77 0.79 0.80 0.80 0.55 0.55 0.54 0.53 0.97 1.00 0.95 0.95 0.72 0.14 0.40 0.65
MAPR 0.74 0.77 0.79 0.80 0.80 0.55 0.55 0.54 0.53 0.97 1.00 0.95 0.95 0.72 0.14 0.40 0.65
MPR 0.78 0.77 0.77 0.72 0.70 0.48 0.49 0.47 0.48 0.90 0.93 0.93 1.00 0.73 0.11 0.42 0.69
MAE 0.78 0.77 0.77 0.72 0.70 0.48 0.49 0.47 0.48 0.90 0.93 0.93 1.00 0.73 0.11 0.42 0.69
MSE 0.88 0.87 0.85 0.81 0.76 0.80 0.81 0.79 0.81 0.58 0.70 0.70 0.71 0.71 0.63 0.67 0.66
LogL 0.47 0.47 0.45 0.45 0.42 0.73 0.74 0.73 0.73 0.08 0.20 0.20 0.17 0.17 0.67 0.55 0.24
CalL 0.61 0.61 0.59 0.55 0.53 0.47 0.48 0.47 0.48 0.38 0.46 0.46 0.50 0.50 0.70 0.50 0.29
CalB 0.61 0.59 0.59 0.55 0.53 0.49 0.50 0.48 0.48 0.57 0.64 0.64 0.67 0.67 0.69 0.31 0.42

Fig. 1. Dendrograms of standard correlations (left) and rank correlations (right) between the metrics for all datasets.
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If we use linkage distance 0.3, we discover 4 clusters. One with the
AUC measures and LogL, a second cluster with all the probabilistic
and qualitative measures (including MSE), and a third and fourth
isolated measures: CalL and CalB. It is remarkable that MSE finds
its highest correlation with the qualitative measures (Acc in partic-
ular) and LogL with the AUC measures. Other surprising results are
the low correlation between the AUC measures and some of the de-
rived measures (SAUC and PAUC), especially SAUC, which has an
AUC-based definition, but only shows correlations of about 0.45.
LogL shows the worst correlation of all with the group of ‘plain’
probabilistic measures (MPR, MAE, PAUC, MAPR, SAUC), mainly
due to its logarithmic behaviour.

Despite the methodology being different, these results are con-
sistent with (Caruana and Niculescu-Mizil, 2004), our previous pre-
liminary results (Ferri et al., 2004) and other works we have referred
to in Section 2, the only difference being that we do not find a strong
correlation between MSE and LogL, which was found on these two
works, and might be found in the implementation of LogL, which
might avoid logð0Þ in different ways and also because (Caruana
and Niculescu-Mizil, 2004) only analyses two class problems.

In fact, if we compare the correlation results of 2-class problems
with multiclass problems (see Fig. 2), we get some expected re-
sults. All the AUC variants collapse for 2 classes, since they are
all extensions of multiclass problems but equivalent to 2-class
problems. The rest of the correlations are similar in both cases
although a little bit stronger for multiclass problems. The only
big difference is that MSE is joined to the AUC measures in the
2-class datasets and not to the qualitative measures. This suggests
that MSE behaves differently for 2-class problems and multiclass
problems.

If we compare the correlations for the datasets with balanced
class distribution against the correlations for the datasets with
imbalanced class distribution (see Fig. 3), the results show more
variations. Correlations are much lower for imbalanced datasets,
and the way in which the definition of each measure mixes the par-
tial functions for each class is very relevant. For instance, qualitative
measures are very close for balanced datasets. There is virtually no
difference between Acc, KapS, MAvG, MFM and MAvA for balanced
datasets, while it is amplified for imbalanced dataset. In fact, CalL is
associated with qualitative measures for balanced datasets, but not
for imbalanced datasets. The same thing occurs for LogL, which is
associated with AUC measures for balanced datasets, but not for
imbalanced datasets. Finally, it happens conversely with CalB. It is
associated with ‘plain’ probabilistic measures for imbalanced data-
sets, but not for balanced datasets. This highlights the relevance of
metric choice depending on the class balance of the dataset.

Finally, the results for relatively small vs. large datasets (see
Fig. 4), is significant around linkage distance of 0.2. While qualita-
tive measures and AUC measures are joined for small datasets, and
it is the probabilistic measures which gather more information



Fig. 2. Dendrograms of rank correlations between the metrics for two-class datasets (left) and multi-class datasets (right).

Fig. 3. Dendrogram of rank correlations between the metrics for balanced datasets (left) and imbalanced datasets (right).
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from less data, when it comes to large datasets, AUC and LogL are
very clearly separated from the rest of the measures.

6. Sensitivity analysis

The previous analysis disentangles the relationships of the per-
formance measures and clusters them in groups, according to their
correlation. From the definitions, the correlations and the clusters,
we have been able to give an interpretation of these groups and
their relation to the three families of measures: those based on er-
ror, those based on ranking and those based on probabilities. Addi-
tionally, we have also analysed the influence of imbalance to these
measures. However, for those cases where we have a ‘‘Yes” on one
trait we do not know the degree of sensitivity to that trait. The fol-
lowing experiments try to shed more light on this. Furthermore,
some measures integrate features from more than one of the pre-
vious families and behave differently to changes on prior probabil-
ity distribution (especially, class frequencies). To gain more insight
into the relationship of these measures and their ability to capture
misclassifications, bad rankings (separability), bad probabilities,
and class proportion drifts, we have devised some experiments
to directly assess these issues, to complement the theoretical
arrangement performed in Table 1.
We present four experiments on model selection over four syn-
thetic scenarios. The idea is that, given two models M1 and M2,
with M1 being better than M2, we progressively introduce some
noise to both models to check whether the performance measures
are able to choose M1. In order to analyse the four traits mentioned
above, noise is applied to both models in four different ways.

� Misclassification noise: Noise is applied to actual classes. In this
scenario we measure how sensitive the measure is to changes
in the actual class produced.

� Probability noise: Noise is applied to the probabilities the models
produce for each prediction. In this scenario, we measure how
sensitive the measure is to changes on model probabilities. This
can be interpreted as a situation where we analyse the reliability
of the estimated probabilities, good calibration, etc.

� Ranking noise: Noise is applied to the ranking of the model pre-
diction. In this scenario we measure how sensitive the measure
is to model ranking change. This can be interpreted as situations
where we analyse the reliability of the order of scores, i.e. good
or bad class separability, etc.

� Class proportion noise: Noise is applied to the frequency of the
dataset classes, i.e. we vary the proportion of classes. In this sce-
nario we measure how sensitive the measure is to class



Fig. 4. Dendrogram of rank correlations between the metrics for small datasets (left) and large datasets (right).

Fig. 5. Measure sensitivity to misclassification noise.

C. Ferri et al. / Pattern Recognition Letters 30 (2009) 27–38 35
proportion drifts. This can be interpreted as situations where we
analyse the robustness (or conversely, sensitivity) to changes in
prior class distribution.

The first part for the four experiments is the same. Two binary
(two-class) models are created. These artificial classifiers are ran-
domly created in the following way. First, we generate 100 real
numbers from a uniform distribution on [0,1]. These numbers rep-
resent probabilities of the positive class. We order these probabil-
ities decreasingly. Secondly, we assign a positive class to the
elements where the probability is greater than 0.5 and negative
class to the rest. Finally, we randomly modify 10 probabilities
using the same uniform distribution on [0,1]. As a result, we have
a classifier, denoted by M1, with a good separability/ranking and a
performance level of about 95%. This is just a way to generate such
an artificial classifier, and does not have a significant influence on
the following experiments if done differently (provided that the
classifier has good separability and classification rate).

The second classifier, M2, is obtained from the first one by ran-
domly modifying 10 additional probabilities (different from the
ones which were modified on the first classifier and copied to
the second). Consequently, on average, the second classifier has
worse separability and a worse classification rate (about 90%) than
the first one.

A remarkable issue of this setting is that, as a result, M2 is better
calibrated initially than M1. We will see this through the CalB mea-
sure, which will be ignored during the analysis, due to its ‘strange’
behaviour, since it is not a performance metric useful for model
selection, but is purely a measure of calibration.

We generate two classifiers in the previous way 10.000 times
(so giving 10.000 experiments) for each level of noise. For each
experiment we record the selection made by the measure. If it se-
lects M1, we score 1, if it select M2, we score 0. For ties, we score
0.5. When no noise is introduced, since M1 is generally better than
M2, all performance measures should select M1 on average. Things
change, though, if we introduce some type of noise to M1 and M2.

The following experiments gradually introduce different types
of noise, in order to check the degree to which the selection made
by each measure is affected.

6.1. Misclassification noise

In this first scenario, we apply noise to actual class in order to
measure the sensitivity (or conversely, robustness) to changes (or
noise) in the actual class. Noise ranges from 0% (where no class
label is modified on the dataset) to 100% (where all class labels
are randomly generated). At 100% noise, all labels are new and
both models should behave similarly. In the rest, since M1 must
be better than M2, we record the estimated probability (i.e. fre-
quency) of making a wrong guess (choosing M2 instead).

As we can see in Fig. 5, measures go from 0.0 (no wrong
guesses) to 0.5 (half the chance of a wrong guess). The point at
0% and 100% noise shows a high coincidence for all measures.
The interesting part of the plot is precisely the evolution from 0%
noise to 100%. We can see four lines where the measures cluster.
Setting CalB appart, the first cluster on the bottom (with an aver-
age around 0.29 mistakes) is more robust to this misclassification
noise and is logically composed on measures based on misclassifi-
cation or error: Acc, MFM, MAvA, MAvG and KapS. The rest of the
measures are at significant distance (with an average around 0.31):
AUC measures, SAUC, PAUC, MSE, MPR, MAPR, MAE, CalL. The least
robust is LogL with an average of 0.33. This means that should the
dataset have noise on the class labels (i.e. noise in the test set),
these latter measures will not behave well when choosing the best
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model. The two main clusters are clearly consistent with the first
column (‘‘Class Threshold”) in Table 1.

6.2. Probability noise

In this second scenario, we apply noise to the probabilities of
the models in order to measure the sensitivity (or conversely,
robustness) to bad probability estimation. Class labels on the data-
sets are left unaltered, but classification thresholds might vary.

Here, all the probabilities are modified at all the degrees of
noise. The level of noise determines the degree to which probabil-
ities are modified. A value a (a obtained randomly from a uniform
distribution ½�b::bÞ is added to each probability. b goes from 0
(noise = 0) to 0.5 (noise = 100).

As we can see in Fig. 6, the results are very different from those
in the previous scenario. Here, qualitative measures such as Acc,
MAvA, MAvG, KapS and MFM make bad choices in general. The
groups begin at the bottom with the four AUC measures, which
along with MSE present an average wrong choice ratio between
0.087 and 0.088. The explanation of why AUC measures behave
well is simple. The ranking is only affected significantly at great de-
grees of probability noise. Consequently, the good choice is pre-
served. The behaviour of MSE is more difficult to explain, since
MSE behaves quadratically, but it can be understood if we see that
at the right of the picture, probabilities are modified +/�0.25 on
average, which means that great changes, for which the quadratic
stress will make a big impact, are not common.

At quite a distance (more or less in the middle band of the
graph) we find MPR, MAPR, MAE and PAUC (with averages about
0.13), which are all probabilistic measures equally sensitive to
small or large probability changes. SAUC is, surprisingly, found
next with 0.15. SAUC might be found here for different reasons, be-
cause the rankings in the middle (which have more weight due to
the inclusion of probabilities in this measure) have more relevance
in this measure. At the upper band, we find the qualitative mea-
sures (with an average value or 0.18): Acc, MAvA, MAvG, KapS
and MFM. The explanation for this bad behaviour is that for qual-
itative measures, if all probabilities are modified, as is the case
here, the border between classes is highly affected, and this makes
these measures worse for selecting the good model. Finally, CalL
and LogL present inverse behaviours and are more erratic then
Fig. 6. Measure sensitivity to probability noise.
the rest. CalL starts badly but it is the best measure in the end. This
means that when distortion on probabilities is high, CalL is still
able to tell between models. LogL on the contrary, behaves reason-
ably well for small probability distortions but its logarithmic char-
acter makes it the worst measure for high distortions (since many
probabilities will be cut to 0 or 1, yielding �1 and 0 logarithms).

With this experiment, we have a view which gives more infor-
mation than that seen in column (‘‘Calibration”) in Table 1, espe-
cially for probabilistic measures.

6.3. Ranking noise

The third scenario introduces noise to the ranking. In particular,
given a model where the probabilities are sorted, we introduce
random swappings of two consecutive elements. The degree of
noise goes from no swapping (noise = 0) to 100.000 swappings
(noise = 80).

Class labels on the datasets remain unaltered, and classification
thresholds are constant at 0.5. However, calibration, misclassifi-
cation and separability are affected by this type of noise.

The results shown on Fig. 7 indicate three types of measures. On
the one hand (excluding CalB), at the top, we have the measures
based on misclassification or error: Acc, MFM, MAvA, MAvG and
KapS. These are more affected by these swappings than the rest
since chained swappings are more frequent in probabilities around
0.5, which implies a change of class. On the other hand, we find the
probabilistic and ranking measures such as SAUC, PAUC, MSE, MPR,
MAPR, MAE, CalL and the AUC measures. These clusters are clearly
consistent with the third column (‘‘Ranking”) in Table 1.

6.4. Class frequency variation

The last experiment evaluates what happens if one of the clas-
ses has few examples and how this affects the robustness of a com-
parison between models. From the original classes 0 and 1, we
progressively eliminate examples from class 1. At a noise level of
0 we eliminate no elements from class 1. At a noise level of 50
we eliminate all the elements (50 elements) from class 1.

The results in Fig. 8 show that the AUC-based measures (the
four AUCs, and SAUC, PPAUC/MAPR) are the ones which behave
worst, because of their 1-vs-1 or 1-vs-n definition. We find that
Fig. 7. Measure sensitivity to ranking noise.
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SAUC and PAUC/MAPR are especially bad. At a distance, we find
MAvA and MAvG which have a non monotonic behaviour. At a
short distance MPR/MAE. LogL, CalL and MSE are quite robust.
Then, MFM and KapS, which beahve very well until value 30. Acc
is very robust and remains almost constant. Even with noise close
to 50 where about only one element is of class 1, the selection error
is just 0.034.

The interpretation is straightforward in this case. If we want to
measure the quality of models that might be affected by classes
with a very low percentage of elements, the AUC-based measures
and the MPR, MAE and macro-averages are not a good idea, be-
cause the global measure is heavily influenced by a poor assess-
ment of an infrequent class. This is precisely because these
measures give equal value to all classes independently of their fre-
quency. On the other hand, Acc, MFM, KapS, LogL, CalL and MSE
give a relevance to each class which is proportional to its fre-
quency. In this sense a badly assessed class is not a problem. This
is consistent with the fourth column (‘‘Class Frequency”) on Table
1, and the dendrograms for imbalanced datasets shown in the pre-
vious section.

6.5. Discussion

From the previous four scenarios, we can say that accuracy and
other qualitative measures are the best when noise is present on
the dataset (the first experiment). Consequently, models evaluated
with qualitative measures will be more robust when concept drift
or other strong changes appear in the evidence. Probability-based
measures are not good here and AUC measures behave relatively
well. However, qualitative measures are very bad when distortion
is produced during learning because a bad algorithm is used or
small training datasets (models are distorted, which are repro-
duced by the second and the third experiment). In these cases,
AUC measures are the best. According to this, if we have a learning
scenario where distortion might happen on the datasets or on the
learning process, the AUC measure is preferable, as has been shown
in many previous studies (e.g. Rosset, 2004). Finally, if we have
very few examples from a class, measures which are based on
macro-averages or 1-vs-1 or 1-vs-n combinations are a bad option,
because they will be highly influenced by a bad estimation of the
error for the minority class.
Fig. 8. Measure sensitivity to class frequency noise.
7. Conclusions

We have studied the relationships between the most common
performance measures for classifiers. In this study, we have started
from the definitions, then we have designed a set of experiments to
analyse the correlations between measures and their sensitivity to
several identified traits. The results uncover the existence of
important similarities between measures but also significant dif-
ferences between others.

The previous analysis shows that most of the measures used in
machine learning and pattern recognition for evaluating classifiers
really measure different things, especially for multiclass problems
and problems with imbalanced class distribution, where correla-
tions are worse. One of the most surprising results from the study
is that the correlations between metrics inside the same family are
not very high, showing that with a probabilistic understanding of
error, it is very different to use MSE, LogL or MPR. It is even more
different for the calibration measures. With a qualitative under-
standing of error, it is still different to use Acc or MAvG, although
correlations in this group are higher. The only compact group hap-
pens when we want to rank predictions, and it is not significantly
different to use different variants of AUC. Consequently, the previ-
ous analyses in pattern recognition or machine learning (stating,
e.g., that one method is better than other) using different metrics
(even inside the same family, except AUC measures) could not be
comparable and extensible to the other metrics, since, the differ-
ences in performance between modern machine learning methods
are usually tight.

As future work, one interesting issue would be to analyse the
relationship between measures when one is used with a small sam-
ple and the other is used with a large sample from the same distri-
bution. This would complete our sensitivity study on which
measure captures more information and is more robust for small
datasets. Another line of future research would be the development
of new measures (not as an average of measures as other works have
done (Caruana and Niculescu-Mizil, 2004; Huang and Ling, 2007),
but in the way suggested at the end of section 3.1), or the inclusion
of more measures in the study, such as the chi-square statistic (Pal-
ocsay et al., 2001), or the Critical Success Index (CSI) and Heidke’s
Skill Statistic (HSS) (Marzban, 1998; Marzban and Haupt, 2005).

Summing up, apart from the clarification and the many obser-
vations found in the relationship between metrics and their sensi-
tivity to several characteristics, this work can be used as a
reference when comparing two different experimental works in lit-
erature which use different metrics, in order to see whether the re-
sults are comparable or not.
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